Presented within is an empirical ground-motion model (GMM) for subduction-zone earthquakesin Japan. The model is based on the extensive and comprehensive subduction database of Japanese earthquakes by the Pacific Engineering Research Center (PEER). It considers RotD50 horizontal components of peak ground acceleration (PGA), peak ground velocity (PGV), and 5%-damped elastic pseudo-absolute acceleration response spectral ordinates (PSA) at the selected periods ranging from 0.01 to 10 sec. The model includes terms and predictor variables considering tectonic setting (i.e., interplate and intraslab), hypocentral depths (D), magnitude scaling, distance attenuation, and site response. The magnitude scaling derived in this study is well constrained by the data observed during the large-magnitude interface events in Japan (i.e., the 2003 Tokachi-Oki and 2011 Tohoku earthquakes) for different periods. The developed ground-motion prediction equation (GMPE) covers subduction-zone earthquakes that have occurred in Japan for magnitudes ranging from 5.5 to as large as 9.1, with distances less than 300 km from the source.
SMK_GMPE.zip (14.1 MB)
Full List of PEER Reports: click here.